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Abstract —This paper presents a coordinate-free method of solving the

problem of electromagnetic wave reflection from the surface of a unix”ially

anisotropic medhrm. Based on the direct manipulation of vectors, dyadics,

and their invariants, the method eliminates the nse of coordinate systems.

It facilitates solutions and provides results in a greater genersfky. The

paper contains the following results in coordinate-free forms: a) the

dispersion eqnations; b) me directions of field vectors; c) the Poynting

vectors (ray vectors) and group velocities d) the’ laws of reflection and

refraction; and e) the ~ahsmission and reflection coefficients. The results

are valid for the incident wave having any polarization, and the optic axis of

the uniaxiaf medium hdng arbitrarily oriented with respect to the interface

and the plane of incidence.’

I. INTRODUCTION

B ECAUSE OF THE rapid advances in tec~ology,

wave propagation in anisotropic media such as plas-

mas, ferrites, etc., has become a subject of intense research

[ 1]-[7]. The emergence of coherent light and optical fibers

also makes wave propagation in dielectric crystals a topic

of special interest [8]–[ 12].

In applied electrornagnetics, the approach to solutions of

various boundary value problems has been the coordinate

method [8], [ 13]–[ 15]; that is,. during the processes of

solutions, one or more coordinate systems are introduced’.
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For example, in considering wave propagation in an aniso-

tropic crystal, we formulate and solve the problem with

respect to a particular coordinate system—the principal

coordinate system of the dielectric tensor [8]. However,

when a boundary surface exists, the problem becomes more

complex. In this case, two generally inconsistent require-

ments govern the choice of coordinate system. Inside the

crystal, the principal coordinate is preferred, but on the

boundary surface, a coordinate system with one of its

coordinate planes coinciding with the surface is preferred.

Using either system leads to a large number of simulta-

neous equations and ends in very cumbersome results [16].

Thus, only some special orientations of the optic axis with

respect to the interface and the plane of incidence have

been considered [17], [18]. ,’

In this paper, we shall present a coordinate-free method

to solutioni of wave reflection from a uniaxially artiso-

tropic medium. We consider only the case when i” is a

tensor while p is a scalar. The method applies equally well

to the dual case of ferrites. Since the electric and magnetic

fields are vector quantities, and they are related by the

vector Maxwell equations and constitutive relations, we

shall seek vector solutions directly from these vector equa-

tions. Based on the direct manipulation of vectors, dyadics,

and their inv@mts, the method eliminates the use of
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coordinate systems. It facilitates solutions, condenses ex-

position, and provides results in a greater generality. It

further renders physical concepts more tangible and easy

to grasp [19].

II. DISPEIMION EQUATIONS AND DIRECTIONS OF

FIELD VECTORS

For a monochromatic plane wave of the form

&= Re{EOexp[i(k. r- ~t)]} (1)

the Maxwell equations in a source-free region are

(.IJ6J.E0 = —k XHO (2)

q.LOHO= k X EO (3)

where i is the dielectric tensor of the medium. With respect

to the principal coordinate system the dielectric tensor of a

uniaxial medium takes the matrix representation

[1

(l 00

~=ocLo (4)

00 611

where two of the three diagonal elements are equal. We

may also express t in a coordinate-free dyadic form

where f is a unit vector in the direction of optic axis, and I

is the unit dyad. In crystal optics, (5) is associated with a

uniaxial crystal [8]–[ 10]. In a magnetoplasma, it char-

acterizes the medium when the externally applied constant

magnetic field becomes very strong [1].

Making use of the Cayley–Hamilton theorem of matrix

analysis [19], [20], we obtain, respectively, the determinant

and adjoint of the sum of two 3 by 3 matrices

lAf+abl=A2(A+a. b) (6)

adj(~f+ ab)=~[(~+ a. b)~–ab]. (7)

Hence

~-1=

()

Q+ : – $ l?e. (8)
~J.

Eliminating EO from (2) and (3), making use of (8), and

noting from (3) that k. Ho = O, we obtain

~(k).Ho=O (9)

where the wave matrix ~(k) of a uniaxial medium is given

(lo)

Using the results of (6) and (7), we find the determinant

and adjoint of the wave matrix

l~(k)l= (k;c~ –k2)’(k;cl~ll –k+k)/q (11)

.[(kjcl cl, –k. i.k)i+ (cl –Cl, )(kxe)(kx t)]. (12)

A nonzero solution & of (9) exists provided that the

determinant of the wave matrix vanishes. Hence, we obtain

the dispersion equations

k2 = k;c~

and

k.i. k=k;tlql.

For a given direction of wave normal

(13)

(14)

~, these two equa-

tions determine two values of wave numbers k. Since the

wave number defined by (13) does not depend on the

direction of wave normal i, as in the case of isotropic

media, the corresponding wave is called the ordinary wave.

Denoting this wave number by k+, we have

k+= ko~ . (15)

On the other hand, the wave number defin~d by (14) does

depend on the direction of wave normal k, and thus the

corresponding wave is called the extraordinary wave.

According to (14), the wave number of the extraordinary

wave denoted by k_ is

[ I
l/2

k_= k.
cl 611 (16)

~l(~xt)2+#”e)2 “

Since multiplication of any solution of the homogeneous

equation (9) by a constant yields another solution, (9)

uniquely determines only the direction of HO, not its mag-

nitude. For the ordinary wave, both the determinant and

adjoint of the wave matrix vanish. In this case, the homo-

geneous equation (9) becomes

(k+ X ~).HO = O.

Since HO must also be perpendicular to k+, we thus choose

the direction of HO as

lz+=+[k+x(k+x?)]. (17)

The direction of the electric field vector EO follows from

the Maxwell equation

e+=k+XZ. (18)

For the extraordinary wave, the adjoint of the wave matrix

does not vanish. Hence, the direction of HO is proportional

to the columns of adj ~(k_) [19], [20]

h.= [adj~(k_ )]*U (19)

where u is an arbitrary vector. Using the results of (12),

(16), and Maxwell’s equations, we choose

h_= UCOC1(k_ X ?) (20)

hence

e_ = kj6Lf–(k_.2)k_. (21)

It is noted that for the ordinary wave, e+ is perpendicular

to the plane formed by vectors k+ and optic axis C while h+

lies on the plane. On the other hand, for the extraordinary

wave, vector e_ lies on the plane formed by vectors k_ and

i?, but h_ is perpendicular to it.
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III. WAVE VECTOR SURFACESAND WY VECTORS k. . .

T
k. ~

or< inary extraordinary wave

wave

We shall now consider some relations among the wave

vector surface, Poynting’s vector (or ray vector), velocity of

energy transport, and group velocity in a uniaxially aniso-

tropic medium. For an ordinary wave, the time average

Poynting vector follows from (17) and (18)

(k+ X ?)*k
(p+) = Z(.Jpo + (22)

since the total time average energy density is

w’+ ) = ~(k+ x ?)2. (23) 14ko-q

Fig. 1. Wave vector surfaces for a uniaxial medium when [,, > c ~.Hence, the velocity of energy transport becomes

(p+ )—— . ~ft+.‘E+- w“+) K
(24)

1.
A plot of dispersion equation as the wave normal ~ takes

all possible directions defines a wave vector surface. In the

case of an ordinary wave, the wave vector surface defined

by (15) is a surface of a sphere of radius kO&. The group

velocity is thus

.---
optic

(25)

which is the same as the velocity of energy transport. From

the definition of group velocity, we see that it is normal to

the wave vector surface. Moreover, the dot product of the

phase velocity

Fig. 2. wave vector surfaces for a uniaxial meclkm when ~ II < ~ L.

Vectors h_ and b. are directed into the paper. (P_) is normaf to the
wave vector surface at k_, e_ is perpendicular to (P_ ), and d_ is
perpendicular to k_. Vectors e+ and d+ are directed out of the paper.

~k+ =-a+‘p+ = k

+ G
and the group velocity gives

(-)

U*2
‘g~”vp+ = k = up+.

+

(26)

Hence, the velocity of energy transport

(P-) C* (z-k )
VE- = (w_) = 6X46,, - (31)

(27)
is again equal to the group velocity

We may thus conclude that the ordinary wave of a uniaxial

medium behaves as waves in isotropic media.

On the other hand, for the extraordinary wave, the wave

vector surface defined by (16) may be written as

(32)

but is not equal to the phase velocity

I 1(i)i = ~ (k_ X ?)2 + (k_. t)2 ‘/2i (33)
v*–=k _ —.

— ’11 Cl
(28)

However, the dot product of group and phase velocities

still yieldswhich represents a surface of revolution about the optic

axis t?and is an ellipsoid. The time average Poynting vector

(or ray vector), from (20) and (21), is ()
2

vg_. vp_ = ~
k_

= vp_2. (34)

(P_)= ~(e_Xh_)
The above results can be illustrated graphically. Fig. 1

shows a cross-sectional view of a wave vector surface when

611> CL (for example, quartz). We see that in this case the

ordinary wave travels faster than the extraordinary wave.

Conversely, when Cll<Cl (for example, calcite) the ordinary

wave in a uniaxially anisotropic medium travels slower

than the extraordinary wave, as is shown in Fig. 2. In

either case, we note that the direction of energy transport

(.otoeL (k_ X 2)2 _
—

26,,
(c*k_). (29)

The total time average energy density is

(W_) = *(k_ X @)*. (30)
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does not coincide with the direction of wave propagation

i_, and the projection of the group velocity in the direc-

tion of wave normal gives the phase velocity of the wave.

IV. LAWS OF REFLECTION AND REFRACTION

We shall next examine the problem of reflection and

transmission of waves at the interface of an isotropic and

uniaxial medium. The dispersion equations (13) and (14)

cannot determine the wave vector k completely. However,

at the interface of two media, the tangential component of

k must be continuous, thus

k,x~=k, x(j=k+x~=k.xij (35)

where k, is the wave vector of the incident wave, /j is a unit

vector normal to the interface pointing from isotropic

medium I toward uniaxial medium II as shown in Fig. 3.

k,, k+, and k_ are the wave vectors of the reflected and the

two transmitted ordinary and extraordinary waves, respec-

tively. Equation (35) is the vector forms of the laws of

reflection and refraction. By introducing vectors

b=QXa (36)

and

a=ki X~=bx~ (37)

we may rewrite (35) as

ka=b+qa~ (38)

where the subscript a denotes i, r, +, or –. Equation (38)

clearly shows that for a fixed origin O on the interface, the

tips of all the wave vectors drawn from O must lie on a

straight line that passes through the tip of vector b and is

parallel to ~ (see Fig. 3). To determine the wave vector

k+= b + q+~ of the transmitted ordinary wave in the uni-

axial medium II, we substitute k+ into the dispersion

equation (13) and obtain

q+= + (k~cl – a2)1’2. (39)

The choice of the positive sign in front of the square root is

dictated by the fact that the energy carried by the trans-

mitted wave should flow toward medium II, that is, k+.4 =

q+> O. Similarly, substituting the wave vector k_ = b + q_~

of the transmitted extraordinary wave into the dispersion

equation (14), we obtain

(@t”!l)q: +2( b@l)q-+(b~ ”b)-k:~~~ll=0. (40)

This is a quadratic equation in q_. Again we must choose

solution q_ so that (P_ ).4 >0. From (29) we see that this

condition corresponds to k_. i -q >0, or

From (40) to (41) we may now obtain

(41)

(42)

/

k.“-

mecllunl 11

unlaxial

.
!+

110 , T

q

[) Interface

<

k
-,

5

(k x a)
-, ---

Fig. 3. Geometry of the reflection problem and orientations of wave

vectors.

medium 11

UIl,axle.1

11., F

~ q

k. ..-

ordinary wave
L+

optic

ax, s

extraordinary wave
$1

lnterfac~

I 1“ / / fmkriiil
“
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1,
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Fig. 4, Geometrical determination of wave vectors at the interface of an
isotropic and a uniaxiaf medmm. Vector a is directed out of the paper.

Hence

(44)

A geometrical determination of wave vectors at the inter-

face of an isotropic and uniaxial medium is shown in

Fig. 4.

V. TRANSMISSION AND REFLECTION COEFFICIENT

MATRICES

Knowing the wave vectors of all the waves, we may now

proceed to find the reflection and transmission coefficients

at the interface of an isotropic–uniaxial medium. We de-

compose the amplitude vectors of the incident and the

reflected waves in isotropic medium I into components

perpendicular and parallel to the plane of incidence (see
Fig. 3)

Eoz =xlla + All(r$z Xa) (45)

Ho, = (60t,/po)’’2[f11(i, Xa)– Alla] (46)

and

Eor=B1a+Bll(ir Xa) (47)

IZor= (Eo6,/po)’’2[B1(k, X a)– Blla]. ., (48)



CHEN: COORDINATE-FREE APPROACH TO WAVE REFLECTION

where c, is the dielectric constant of the isotropic medium

I. The amplitude vectors of two transmitted waves in

uniaxial medium II are as follows. For the ordinary wave

Eoh=C, e. Hoh=C. hh (49)

where e+ and h+ are given by (18) and (17), respectively.

For the extraordinary wave

Eo. = C_e_ Ho. = C_h_ (50)

where e_ and h_ are given by{21 ) and (20), respectively.

Matching the boundary conditions at the interface, we find

the amplitudes C+ and C_ of the transmitted waves in

terms of the known amplitudes Al and All of the incident

wave

where the transmission coefficients are given by

T,, = M1l/A Tlz = M,2/A

Tzl = M2, /A T2Z = M22/A

and

Ml, = -2q,a2(x+ Y)/[k+. (a x ~)]

Mzl = 2q1tz2(U+ Z)/k~cl (a”t)

M : ::::;?;;::;’!;::”;;12 Or.lrt
.-

Mzz = 2k1a2q1(q, + q+ )[k+. (a X ~)]

A=(qi+q+ )(x+ J!)+(qi+q-)(U+.Z)

X= k~q,cl [k+(a X t)][k_. (a X t)]

Y=k,?[k+. (a Xt)][q~(b. ?)-q_a2(~. d)]

U= k~k~clq+ (a .2)2

Z=k$~qi(a. f)2.

(51)

(52)

(53)

(54)

Similarly, we obtain the amplitudes B~ and B,, of the

reflected wave in terms of the known amplitudes Al and A,,

of the incident wave

(55)

where the reflection coefficients are given by

rll=[(4- q+)(x+y)+(qi -q-)( u+z)]/A

r12 = 2(q+ – q. )(V– L)/A

r21 = 2(q_ – q+ )(V+ L)/A

r22 = [(q, + q+ )(X– Y)+(qt + q-)(.Z - u)l/A (56)
and

V= k~c~k,q,q+ (ao~)(b’~)

L=k~e~k1qta2(a.t)(~.~) (57)

V– L = k~clk,q,( a.t)[k+.(a X t)]

V+ L=k&Lkiqt(a. t)[q+(b”t)+a2(~ .d)]. (58)

Equations (51) and (55) give, respectively, the transmission

335

and reflection coefficients of a wave that is incident from

an isotropic to a uniaxial medium. The results are obtained

in the most general vector forms with an incident wave of

any polarization, and the optic axis 2 arbitrarily oriented

with respect to the interface and the plane of incidence.

An examination of (54) shows that when the direction of

the optic axis t is reversed, the reflection coefficients given

in (56) and the reflected ~ield vectors in (47) and (48)

remain unchanged. On the other hand, from (53) we see

that the transmission coefficients given in (52) change signs

when we reverse the direction of & However, according to

(17), (18), (20), and (21), the field vectors Eo+, Ho+, Eo-,

and Ho_ of the transmitted wave again remain unchanged.

It is interesting to note that in the presence of a uniaxial

medium II, the reflection and transmission coefficient

matrices contain both diagonal and off-diagonal elements.

Thus, for a linearly polarized incident wave with the elec-

tric field intensity perpendicular to the plane of incidence,

the electric vector of the reflected wave will have compo-

nents both perpendicular and parallel to the plane of

incidence.

In the special case of medium H being isotropic, that is,

El =Cll = C2, we have

q+= L=(k&2-a2)’’2=qt

k: = k? = k&2 = kf (59)

and

k+=k_=b+q,~=kt. (60)

Furthermore

Eo_ = - C+ [k, X (k, X c)]. (61)

Since 2 may now be in any direction, and in order to

identify E.+ and E._ with the components perpendicular

and parallel to the plane of incidence, we choose 2 = ~;

thus

Eo, = C~a

Eo_=– C_(k, Xa). (62)

Substitution of the above into (52)-(58) yields

c+ 2qi c- _ –2k, q,—=
A. !7, + q, All k~qi + k,?qt

T,z = T21= O (63)

and

r,2 = r2, = o. (64)

These are the well-known Fresnel’s formulas for two iso-

tropic media [14]. In this case, we see that all the off-diago-

nal terms of the transmission and reflection coefficient

matrices vanish. Thus, we may treat the perpendicular and

parallel polarizations separately.

VI. NORMAL INCIDENCE

In the case of normal incidence, formulas (52)-(58) are

no longer valid because the concept of the plane of inci-

dence loses its meaning. In this case, the wave vectors take
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the form

ki=kirj =-k,

k+= k+rf k_= k_tj

where

ki = ko~ k+= ko~

()
1/2

k.=ko ~ .
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(65)

(66)

We now consider the plane formed by vectors 2 and 4 as

though it were the plane of incidence. Henceforth, the

subscripts 1 and \I will be used in this sense. Decomposing

the field vectors of the incident and the reflected waves

into components perpendicular and parallel to the plane

formed by vectors? and ~, we obtain the following.

For the incident wave

Eoi =AL(~ x 2)+ A,I[4 X(4 x ~)]

Hoi = -Q+ixEo J
ap ~

= (W@O)l’2{A1 [4 x (d x t)] -AI](4 x t)}. (67)

For the reflected wave

Eor=B1(f x2)+ B,, [~x(@x t)]

HO, = (cot, /1#2{-llL [4x(@ x2)] +Bl, (lxt)}.

(68)

For the transmitted ordinary wave

Eo+ = c+ (~ x 2)

Ho+ = (606Lpo)’’2c+ [~ X(4x t)]. (69)

For the transmitted extraordinary wave ~

EO_ = C_ [k;Ele– k: (~.~)j]

Ho. = uto~l k_C_ ((f X 2). (70)

Matching the boundary conditions at the interface and

noting that (~ X 2) and [rj X (~ X ~)] are two linearly inde-

pendent vectors, we obtain

c+ 2ki C_ –2ki—. —=
Al ki + k,

(71)
4 k~c~ (ki + k_ )

and

B. ki – k. -%= k, – k_—=
AA ki + k,

(72)
4 ki+k_-

Relations (52) and (56) together with (71) and (72)

completely solve the problem of wave reflection from a

uniaxially anisotropic medium.

VII. CONCLUSION

In this paper we presented a coordinate-free method to

solve the general problem of electromagnetic wave reflec-

tion from the surface of a uniaxially anisotropic medium.

The results are expressed in coordinate-free forms. They

have the advantages that the incident wave can have any

polarization, and that the optic axis of the uniaxial medium

can be arbitrarily oriented with respect to the interface and

the plane of incidence.
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