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A Coordinate-Free Approach to Wave
Reflection from a Uniaxially
- Anisotropic Medium
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-Abstract ~—This paper presents a coordinate-free method of solving the
problem of electromagnetic wave réflection from the surface of a uniaxially
anisotropic medium. Based on the direct manipulation of vectors, dyadics,
and their invariants, the method eliminates the use of coordinate systems.
It facilitates solutions and provndes results in a greater generality. The
paper contains . the followmg results in coordinaté- free forms: a) the
dispersion equations; b) the directions of field vectors; c) the Poyntmg
vectors (ray vectors) and group velocities; d) the laws of reflection and
refraction; and e) the transmnssnon and reflection coefficients. The results
are valid for the incident wave having any polanzatlon, and the optic axis of
the uniaxial medium being arbitrarily oriented with respect to the interface
and the plane of mcndence ‘ .

I INTRODUCTION

ECAUSE OF THE rapid advances in technology,
wave propagation in anisotropic media such as plas-
mas, ferrites, etc., has b_ec_ome a subject of intense research
[1]-[7]. The emergence of coherent light and optical fibers
also makes wave propagation in dielectric crystals a topic
of special interest [8]—- —[12].
~In apphed electromagnetics, the approach to solutions of
various boundary value problems has been the coordinate
method [8], [13]-[15]; that is, during the processes of
solutions, one or more coordmate systems are 1ntroduced
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For example, in considering wave propagation in an aniso-
tropic crystal, we formulate and solve the problem with
respect to a particular coordinate system—the principal

coordinate system -of the dielectric tensor [8]. However,

when' a boundary surface exists, the problem becomes more
complex. In this case, two generally inconsistent require-
ments govern the choice of coordinate system. Inside the .
crystal, the principal coordinate is preferred, but on the
boundary surface, a coordinate system with one of ‘its
coordinate planes coinciding with the surface is preferred.
Using either system leads to a large number of simulta-
neous equations and ends in very cumbersome results [16].
Thus, only some special orientations.of the optic-axis with
respect to the interface and the plane of 1nc1dence have
been considered [17], [18]

In this paper, we shall present a coordmate—free method
to solutions of wave reflection from a uniaxially aniso-
tropic medium. We consider only ‘the case when € is a
tensor while p is a scalar. The method applies equally well
to the dual case of ferrites. Since the électric and magnetic
fields are vector quantities, and they are related by the
vector Maxwell equations and constitutive relations, we
shall seek vector solutions directly from these vector equa-
tions. Based on the d1rect manipulation of vectors, dyadics,
and the1r 1nvar1ants the method eliminates the use of
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coordinate systems. It facilitates solutions, condenses ex-
position, and provides results in a greater generality. It
further renders physical concepts more tangible and easy
to grasp [19].

II. DISPERSION EQUATIONS AND DIRECTIONS OF
FIELD VECTORS
For a monochromatic plane wave of the form
&=Re{Eyexp[i(k-r—wt)]}
the Maxwell equations in a source-free region are
wei-Ey=—k X H,
wioHy =k X E,

)

)
€)

where € is the dielectric tensor of the medium. With respect
to the principal coordinate system the dielectric tensor of a
uniaxial medium takes the matrix representation

e, 0 0
e=|0 ¢ O 4
0 0 ¢

where two of the three diagonal elements are equal. We
may also express € in a coordinate-free dyadic form

()

where ¢ is a unit vector in the direction of optic axis, and I
is the unit dyad. In crystal optics, (5) is associated with a
uniaxial crystal [8]-[10]. In a magnetoplasma, it char-
acterizes the medium when the externally applied constant
magnetic field becomes very strong [1}.

Making use of the Cayley—Hamilton theorem of matrix
analysis [19], [20], we obtain, respectively, the determinant
and adjoint of the sum of two 3 by 3 matrices

AT +ab|=XN(A+a-b)
adj(Af+ab)=A[(A+a-b)I —ab].

1 1),,
— — — | CC.

6” €,

€=ell_+(e”—el)c‘c‘

(6)
™

Hence

&' =—1I+

€,

(8)
Eliminating E; from (2) and (3), making use of (8), and
noting from (3) that k- H, = 0, we obtain

W (k) H,=0 ©)

where the wave matrix W(k) of a uniaxial medium is given

by
W (k) = (Kie, fe_a) - al

— k)i - (kx&)(kxEé).

(10)
Using the results of (6) and (7), we find the determinant
and adjoint of the wave matrix

IW(k)l = (k(%ﬂ - kz)z(kéﬁiu —k-€~k)/€” (11)

(kéel — kz)

€

adj W (k) =

((hde = ke k) T+ (e, — ¢ )(kx &)k x&)]. (12)
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A nonzero solution H, of (9) exists provided that the
determinant of the wave matrix vanishes. Hence, we obtain
the dispersion equations

k*=kle,

(13)
and

k-e-k=kie e,

(14)

For a given direction of wave normal k, these two equa-
tions determine two values of wave numbers k. Since the
wave number defined by (13) does not depend on the
direction of wave normal k, as in the case of isotropic
media, the corresponding wave is called the ordinary wave.
Denoting this wave number by &, we have

k. =k0\/zv' (15)

On the other hand, the wave number defined by (14) does

depend on the direction of wave normal k, and thus the

corresponding wave is called the extraordinary wave.

According to (14), the wave number of the extraordinary
€ EH

wave denoted by k_ is
1/2
k_=k, = ” . (16)
[el (kxé)+ e”(k-é)z]

Since multiplication of any solution of the homogeneous
equation (9) by a constant yields another solution, (9)
uniquely determines only the direction of H,, not its mag-
nitude. For the ordinary wave, both the determinant and
adjoint of the wave matrix vanish. In this case, the homo-
geneous equation (9) becomes

k_Xé)yH,=0.
+ 0

Since H,, must also be perpendicular to k., we thus choose
the direction of H, as

b= o Tkox (k% )]. (17)

The direction of the electric field vector E, follows from
the Maxwell equation

(18)
For the extraordinary wave, the adjoint of the wave matrix

does not vanish. Hence, the direction of H, is proportional
to the columns of adjW(k_) [19], [20]

h_=[adjW (k_)]-u (19)

where @ is an arbitrary vector. Using the results of (12),
(16), and Maxwell’s equations, we choose

e, =k, Xé.

h_=wese, (k_X¢)

(20)
hence

e_=kle, é—(k_-&)k_.

(21)

It is noted that for the ordinary wave, e is perpendicular
to the plane formed by vectors &, and optic axis é while A ,
lies on the plane. On the other hand, for the extraordinary
wave, vector e_ lies on the plane formed by vectors k_ and
é, but h_ is perpendicular to it.
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III. WAVE VECTOR SURFACES AND RAY VECTORS

We shall now consider some relations among the wave
vector surface, Poynting’s vector (or ray vector), velocity of
energy transport, and group velocity in a uniaxially aniso-
tropic medium. For an ordinary wave, the time average
Poynting vector follows from (17) and (18)

k,xé)
(+ c)k

(P,)= 20p, + (22)

since the total time average energy density is

W,y =EE(k, xéY. (23)

Hence, the velocity of energy transport becomes

_SPy) _ e g
Vg, = <W+> \/Z k+' (24)

A plot of dispersion equation as the wave normal k takes
all possible directions defines a wave vector surface. In the
case of an ordinary wave, the wave vector surface defined
by (15) is a surface of a sphere of radius kO\/Z . The group

velocity is thus
dw ¢
O ===k, (25)

8 ok e,

which is the same as the velocity of energy transport. From
the definition of group velocity, we see that it is normal to
the wave vector surface. Moreover, the dot product .of the
phase velocity

(26)
and the group velocity gives
2
w
Gt Gt ™ (k_—) =U§+- (27)
+

We may thus conclude that the ordinary wave of a uniaxial
medium behaves as waves in isotropic media.

On the other hand, for the extraordinary wave, the wave
vector surface defined by (16) may be written as

(k_-&)’

2
kge,

(k_x¢Y
k%e”

-1 (28)

which represents a surface of revolution about the optic
axis € and is an ellipsoid. The time average Poynting vector
(or ray vector), from (20) and (21), is

(P_y=5(e_xh_)

_ wege, (k_X %

2, (e-k_). (29)
The total time average energy density is
k2 2
Wy == (k_xey (30)
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Fig. 2. Wave vector surfaces for a uniaxial medium when € <e¢, .
Vectors h_ and b_ are directed into the paper. (P _) is normal to the
wave vector surface at k_, e_ is perpendicular to (P_), and d_ is
perpendicular to k_. Vectors e, and d are directed out of the paper.

Hence, the velocity of energy transport

_(P)_ &
UE“_<W_> wele“( k)

(31)

is again equal to the group velocity
2

_dw ¢ k)

v (32)

= Ok we, € ¢
but is not equal to the phase velocity

. =ié_=c[ (kxef (k_-é)z}‘”,;_. 3)

?
k € €,

However, the dot product of group and phase velocities
still yields

(34)

The above results can be illustrated graphically. Fig. 1
shows a cross-sectional view of a wave vector surface when
€, >¢_ (for example, quartz). We see that in this case the
ordinary wave travels faster than the extraordinary wave.
Conversely, when ¢, <e, (for example, calcite) the ordinary
wave in a uniaxially anisotropic medium travels slower
than the extraordinary wave, as is shown in Fig. 2. In
either case, we note that the direction of energy transport

B 2_ 2
Ug_vp_— A —UP_.
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does not coincide with the direction of wave propagation
k_, and the projection of the group velocity in the direc-
tion of wave normal gives the phase velocity of the wave.

IV. Laws OF REFLECTION AND REFRACTION

We shall next examine the problem of reflection and
transmission of waves at the interface of an isotropic and
uniaxial medium. The dispersion equations (13) and (14)
cannot determine the wave vector k completely. However,
at the interface of two media, the tangential component of
k must be continuous, thus

(35)

where k, is the wave vector of the incident wave, § is a unit
vector normal to the interface pointing from isotropic
medium ] toward uniaxial medium II as shown in Fig. 3.
k., k_, and k_ are the wave vectors of the reflected and the
two transmitted ordinary and extraordinary waves, respec-
tively. Equation (35) is the vector forms of the laws of
reflection and refraction. By introducing vectors

kX§=k,X§=k,X§=k X§

(36)

b=gXa
and

G7)

a=k; X§g=bXxqg
we may rewrite (35) as
k,=b+gq,§

(38)

where the subscript « denotes i, 7, +, or —. Equation (38)
clearly shows that for a fixed origin 0 on the interface, the
tips of all the wave vectors drawn from 0 must lie on a
straight line that passes through the tip of vector b and is
parallel to § (see Fig. 3). To determine the wave vector
k., =b+ g 4 of the transmitted ordinary wave in the uni-
axial medium II, we substitute k., into the dispersion
equation (13) and obtain

g, =+(kZ, - az)l/z. (39)

The choice of the positive sign in front of the square root is
dictated by the fact that the energy carried by the trans-
mitted wave should flow toward medium II, that is, kK -§ =
q.. > 0. Similarly, substituting the wave vectork_=b + q_§
of the transmitted extraordinary wave into the dispersion
equation (14), we obtain

(§-€4)q> +2(b-e-§)g_+(b-&-b)—kie, ¢,=0. (40)

This is a quadratic equation in g_. Again we must choose
solution g_ so that (P_»-§ > 0. From (29) we see that this
condition corresponds to k_-é-g > 0, or

i

o> - 41

9->~G%q (41)
From (40) to (41) we may now obtain
_b.g.é+§

Lm0 42

q ied (42)

where

¢ =[kie, ¢ (4 e4)—a-(adje)-a]".

(43)
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Fig. 4. Geometrical determination of wave vectors at the interface of an
isotropic and a uniaxial medium. Vector a is directed out of the paper.

Hence

_{d)xaty (a4)
9¢<9

A geometrical determination of wave vectors at the inter-
face of an isotropic and uniaxial medium is shown in
Fig. 4.

k_

V. TRANSMISSION AND REFLECTION COEFFICIENT
MATRICES

Knowing the wave vectors of all the waves, we may now
proceed to find the reflection and transmission coefficients
at the interface of an isotropic—uniaxial medium. We de-
compose the amplitude vectors of the incident and the
reflected waves in isotropic medium I into components
perpendicular and parallel to the plane of incidence (see
Fig. 3)

E,=A a+4,(k xa) (45)

Hy, = (ege, /1) *[4, (k,x a)— 4,a] (46)
and

Ey, =B a+ B (k,xa) (47)

Hy, = (6051/#0)1/2[B¢ (I@,Xa)—B”a] (48)
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where ¢, is the dielectric constant of the isotropic medium
I. The amplitude vectors of two transmitted waves in
uniaxial medium II are as follows. For the ordinary wave

Ey,=C,e, Hy, =C,h, (49)

where e, and A, are given by (18) and (17), respectively.
For the extraordinary wave

E, =C e_ Hy =C_h_ (50)

where e_ and h_ are given by (21) and (20), respectively.
Matching the boundary conditions at the interface, we find
the amplitudes C, and C_ of the transmitted waves in
terms of the known amplitudes 4, and A4 of the incident

wave
[C+]= [Tn le] A¢]
C. L, Tnl{4
where the transmission coefficients are given by

T,=M, /A Ty, = My, /A
T, = ]"[21/A Ty =My/A

&1y

(52)
and

My =-2qa*(X+Y)/[k,-(ax )]

M, =2q,a*(U+Z)/kie, (a-é)

=2q,a*(k?q, + ki, q,)(a-¢)
2= zk(z)k:azﬁ 9.(q,+q_)a-¢)

My, =2k,a’q,(q,+q. )k, (axé)]
A=(g+q )N X+Y)+(q+q.)(U+2Z)
X=kiqe, [k.(ax&)][k_-(axé)]

Y=k [k, (ax&)][q} (b-6)—q_a*(§-¢)]
U=k3k%, q, (a-é)2

(53)

= ke’ q,(a-8)". (54)

Similarly, we obtain the amplitudes B, and B of the
reflected wave in terms of the known amphtudes A and 4,

of the incident wave
B¢]= [l‘“ I‘12”A¢
B | Ty Tnjl4

where the reflection coefficients are given by
Ty =[(g~ g WX +Y)+ (g~ g WU+ Z)] /A
2=2(q.—q_)(V-L)/A
Ly=2(q-—q. YV +L)/A
n=[(4,+4. NX-Y)+(q,+q NZ-U)]/A (56)
and

(55)

V=rkoe, kg9, (a-é)b-¢)

L =ke, k,qa’(a-¢)(§-é) (57)
V—L=kie, k,q,(a &)k, (axé&)]
V+L=kie, kg, (a-é)[q,(b-&)+a*(§-¢)]. (58)

Equations (51) and (55) give, respectively, the transmission
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and reflection coefficients of a wave that is incident from
an isotropic to a uniaxial medium. The results are obtained
in the most general vector forms with an incident wave of
any polarization, and the optic axis ¢ arbitrarily oriented
with respect to the interface and the plane of incidence.

An examination of (54) shows that when the direction of
the optic axis ¢ is reversed, the reflection coefficients given
in (56) and the reflected field vectors in (47) and (48)
remain unchanged. On the other hand, from (53) we see
that the transmission coefficients given in (52) change signs
when we reverse the direction of é. However, according to
(17), (18), (20), and (21), the field vectors E,,, H,,, E,_,
and H,,_ of the transmitted wave again remain unchanged.

It is interesting to note that in the presence of a uniaxial
medium II, the reflection and transmission coefficient
matrices contain both diagonal and off-diagonal elements.
Thus, for a linearly polarized incident wave with the elec-
tric field intensity perpendicular to the plane of incidence,
the electric vector of the reflected wave will have compo-
nents both perpendicular and parallel to the plane of
incidence.

In the special case of medium II being isotropic, that is,

€, =€, =¢€,, we have
q+=q4=(k852_a2)1/2 ¢
k2 =k%=kle,=k? (59)
and
k,=k_=b+qd=k (60)
Furthermore

E, =-C, [k,X(ktXE)]. (61)

Since é may now be in any direction, and in order to
identify E;, and E,_ with the components perpendicular
and parallel to the plane of incidence, we choose ¢ =4;
thus

Ey,,=C.a

E,_=-C_(k,Xa).
Substitution of the above into (52)—(58) yields

(62)

C._ 2 C._ -2k,
A g tq, Ay kP + kY,
T,=T,=0 (63)
and

L _4—4 _ kiq,— klq,

NS, g 2T 1

949 kiq,+ krq,
I,=I,=0. (64)

These are the well-known Fresnel’s formulas for two iso-
tropic media [14]. In this case, we see that all the off-diago-
nal terms of the transmission and reflection coefficient
matrices vanish. Thus, we may treat the perpendicular and
parallel polarizations separately.

VI. NORMAL INCIDENCE

In the case of normal incidence, formulas (52)-(58) are
no longer valid because the concept of the plane of inci-
dence loses its meaning. In this case, the wave vectors take
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the form

ki=k,j=—k,

ko=k.§ k_=kg (65)
where

(66)

We now consider the plane formed by vectors é and § as
though it were the plane of incidence. Henceforth, the
subscripts L and || will be used in this sense. Decomposing
the field vectors of the incident and the reflected waves
into components perpendicular and parallel to the plane
formed by vectors ¢ and §, we obtain the following,

For the incident wave

Ey=A,(Gx &)+ 4[4 x(§%¢)]

1
HOi = ;M_O(ki'x EOi)

= (‘0‘1/!"0)1/2{A¢ [4x(4 x¢é)] _Au(é X é)}. (67)
For the reflected wave
Ey, =B, (§x &)+ By[§x(§x&)]
Hy, = (eger /o) (B, [4X(§ % €)]+ B, (4 x €)).
(68)
For the transmitted ordinary wave
Ey =C,(§%¢)
Hy, = (ege, ﬂ0)1/2C+ (¢ X(q‘ X é)].
For the transmitted extraordinary wave
Ey_=C_[kZ, é— k2 (§-¢)§]
H, =wege, k C_(§%X¢).

(69)

(70)

Matching the boundary conditions at the interface and
noting that (§ X €) and [§ X(§ X é)] are two linearly inde-

pendent vectors, we obtain
C -2k

i ~ i

)

and

=t — = (72)
Relations (52) and (56) together with (71) and (72)

completely solve the problem of wave reflection from a
uniaxially anisotropic medium.

VII.

In this paper we presented a coordinate-free method to
solve the general problem of electromagnetic wave reflec-
tion from the surface of a uniaxially anisotropic medium.
The results are expressed in coordinate-free forms. They

CONCLUSION
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have the advantages that the incident wave can have any
polarization, and that the optic axis of the uniaxial medium
can be arbitrarily oriented with respect to the interface and
the plane of incidence.
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